MicroRNA abundance is altered in synaptoneurosomes during prion disease

نویسندگان

  • Amrit S. Boese
  • Reuben Saba
  • Kristyn Campbell
  • Anna Majer
  • Sarah Medina
  • Lynn Burton
  • Timothy F. Booth
  • Patrick Chong
  • Garrett Westmacott
  • Sucharita M. Dutta
  • Julian A. Saba
  • Stephanie A. Booth
چکیده

Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions. MiRNAs are therefore candidate regulators of these early neurodegenerative changes and may provide clues as to the molecular pathways involved. We therefore determined changes in mature miRNA abundance within synaptoneurosomes isolated from prion-infected, as compared to mock-infected animals, at asymptomatic and symptomatic stages of disease. During preclinical disease, miRNAs that are enriched in neurons including miR-124a-3p, miR-136-5p and miR-376a-3p were elevated. At later stages of disease we found increases in miRNAs that have previously been identified as deregulated in brain tissues of prion infected mice, as well as in Alzheimer's disease (AD) models. These include miR-146a-5p, miR-142-3p, miR-143-3p, miR-145a-5p, miR-451a, miR-let-7b, miR-320 and miR-150-5p. A number of miRNAs also decreased in abundance during clinical disease. These included almost all members of the related miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-429-3p) and the 182 cluster (miR-182-5p and miR-183-5p).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation

The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...

متن کامل

MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease

The mechanisms that lead to neuronal death in neurodegenerative diseases are poorly understood. Prion diseases, like many more common disorders such as Alzheimer's and Parkinson's diseases, are characterized by the progressive accumulation of misfolded disease-specific proteins. The earliest changes observed in brain tissue include a reduction in synaptic number and retraction of dendritic spin...

متن کامل

Polymorphism of Prion Protein Gene (PRNP) in Iranian Holstein and Two Local Cattle Populations (Golpayegani and Sistani) of Iran

Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease in cattle, characterized by the accumulation of an abnormal, proteaseresistant prion protein (PrPSc) in the brain. BSE is similar to scrapie in sheep and goats and Creuzfeldt-Jakob disease in humans. Susceptibility in cattle hasbeen shown to be under the influence of two polymorphic locations, which are...

متن کامل

Prion Infection Impairs Cholesterol Metabolism in Neuronal Cells*

Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumu...

متن کامل

Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer.

MicroRNAs are small noncoding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 nontumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and Cellular Neuroscience

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2016